

1 Introduction

 The NAND Flash is a popular storage media as it dominates the non-volatile Flash market. NAND Flash's
 storage capacity,power efficiency, cost effectiveness, and scalable design make it an ideal choice
 for a wide range of applications.However, one of the inherent challenges with NAND flash is the
 presence of bad blocks that either already exist at manufacture or become unreliable over time due
 to wear and other factors. Managing these bad blocks efficiently is crucial to ensure data integrity and

 system stability.

 Two common file systems designed for use with NAND flash on Linux systems are UBIFS (Unsorted
 Block Image FileSystem) and JFFS2 (Journaling Flash File System version 2). Both file systems have
 built-in mechanisms for handling bad blocks, but they work in different ways.

 This application note explores how these file systems handle bad blocks and provides best practices
 for ensuring data integrity and performance when using NAND flash on Linux systems.

2 NAND Bad Blocks

 Bad blocks in NAND flash memory can either be present from the factory (known as factory bad blocks)
 or develop overtime during the use of the device (known as runtime bad blocks). NAND flash memory
 is expected to have a certain number of bad blocks, and file systems designed for NAND must handle
 these bad blocks gracefully.

• Factory Bad Blocks: These are blocks that were marked as defective during the manufacturing
 process and are flagged before the device is shipped.

• Runtime Bad Blocks: During the lifetime of a NAND device, additional bad blocks may occur. This is
 completely normal, and flash manufacturers cannot avoid this in advance.

 Typically, flash manufacturers would guarantee that the total number of factory bad blocks and runtime
 bad blocks will not exceed certain numbers. In Skyhigh Memory NAND devices, the total number of bad
 blocks will not exceed 2% of NAND total blocks during the device lifetime.

2.1 Bad Block Marker

 In order for the host software to recognize factory bad blocks, and manage bad blocks, all bad blocks

 should be marked in a pre-determined method. In Skyhigh Memory NAND devices, any block where

 the 1st byte in the spare area of the1st or 2nd or last page does not contain FFh is a Bad Block. That is,
 if the 1

st byte of the first page has an FFh value, then the second page and the last page should also be

 checked. If any of these pages has a non-FFh value in its 1st byte of the spare area, that will indicate a

 bad block. Table 1 shows how to mark the block as bad and how to check if it is a badblock.

 Furthermore, the bad block Information must be read before any erase is attempted, as the bad block
 marker could beerased, resulting in incorrect usage of such bad blocks.

AN223240

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 1 of 6

NAND BBM in Linux File System

Author: Zhi Feng

Table 1. Bad Block Marker Marking and Checking Method

Bad Block Marker Marking
(execute on all 3 pages)

Checking
(any of the pages)

Page 0 1st byte of the
spare area

Write to 00h Read if not FFh

Page 1 1st byte of the
spare area

Write to 00h Read if not FFh

Last page of the block 1st byte of the
spare area

Write to 00h Read if not FFh

3 General Best Practices for Handling NAND Bad Blocks
3.1 Bad Block Table (BBT) Management:

The BBT is a table maintained by the MTD subsystem in Linux to track bad blocks in NAND flash. Ensure that
the BBT is updated regularly during system operation, and the MTD driver is properly configured to handle
bad block detection and reporting. Figure 1 shows the general bad block management flowchart.

Figure 1. Bad Block Management Flowchart

3.2 Wear Leveling:
Most flash file systems use wear leveling techniques. By balancing out the erase counts on all blocks, wear
leveling can prevent certain blocks to become bad even if the user data are updated often in those blocks.
On the logical level, some blocks may be updated much more often than others; however, with wear leveling,
all blocks are maintained about the same erase cycle count.

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 2 of 6

NAND BBM in Linux File System

When using wear leveling, you should ensure to have static wear leveling enabled (in UBIFS/UBI). Because
if you can both static and dynamic data partitions, static wear leveling can greatly extend the life span of the
flash by redistributing static data periodically.

3.3 ECC (Error Correction Codes):
Use the ECC algorithm specified by the NAND vendor for the specific NAND devices being used. Even when
some bit errors happen in a NAND page, which is completely normal, the block can still be a good block.
Only when uncorrectable ECC errors happen consistently, a block may be marked as a bad block. ECC
mechanism can correct many of these errors before they result in bad blocks.

3.4 Regular Monitoring:
Periodically check the status of the NAND device for growing numbers of runtime bad blocks. Both UBIFS
and JFFS2 report errors in system logs, so it's essential to monitor them for signs of impending failure.

4 Handling Bad Blocks with JFFS2

 JFFS2 is one of the oldest file systems for NAND flash, and it's designed with wear leveling and bad block
 management inmind. It treats flash as a log-structured file system, meaning that data is written
 sequentially, and old data is garbage-collected.

4.1 Key Features of JFFS2:
• Log-structured design: Data is written in a log format, allowing the file system to avoid writing to bad blocks.

• Garbage collection: Old data is erased and blocks are reclaimed, preventing frequent writes to the same
 blocks and enabling wear leveling.

• Bad block management: JFFS2 detects bad blocks during writes and ensures they are not used for storing
 valid data.

4.2 How JFFS2 Handles Bad Blocks:

4.2.1 Bad Block Detection:

JFFS2 works with the MTD in Linux, which interacts directly with the NAND hardware. The MTD driver

automatically detects and marks bad blocks by reading the bad block markers provided by the NAND device.

During runtime, if JFFS2 encounters a bad block, it skips it and continues writing to the next available
good block.

4.2.2 Wear-Leveling and Bad Block Avoidance:
JFFS2 performs wear leveling to distribute write and erase operations evenly across the flash memory,
reducing the likelihood of premature bad block creation.

If a block fails during programming or erasing, JFFS2 marks it as bad and ensures it is no longer used for writing data.

4.2.3 Data Recovery:
In the event of a power failure or sudden shutdown, JFFS2 can recover data due to its journaling nature. Any
incomplete or corrupted writes are detected during the next mount, and JFFS2 reconstructs the file system
from the valid logs.

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 3 of 6

NAND BBM in Linux File System

4.2.4
•

Best Practices for JFFS2:
Frequent Backups: Although JFFS2 handles bad blocks well, having a backup strategy is crucial to prevent
data loss due to unexpected hardware failures.

• Avoid Frequent Mount/Unmount Cycles: Each time JFFS2 mounts, it scans the entire file system, which
 can be time-consuming for large NAND devices. Keeping the file system mounted can improve
 performance.

• Clean Marker and Number of Operations per page: Some NAND devices can only allow certain number
 of writes per page, for example, NOP=4 means a page can only be written 4 times. Because JFFS2 writes
 a clean marker to the spare area after an erase operation, sometimes it may violate the number of writes
 and can lead to errors. In this case, one may disable the clean marker feature in the JFFS2 configuration.

5 Handling Bad Blocks with UBIFS

 UBIFS is a newer file system designed specifically for flash memory. Unlike JFFS2, UBIFS does not directly
 interact with NAND hardware but works on top of UBI (Unsorted Block Images), a layer that abstracts the
 flash hardware details and manages bad blocks at a lower level.

5.1
•

Key Features of UBIFS:
UBI Layer: UBIFS relies on UBI to manage the physical characteristics of NAND, such as bad block handling,
wear leveling, and space management.

• Scalability: UBIFS is to scale well on large NAND devices, supporting partitions of several gigabytes efficiently.

• Dynamic and Static Wear-Leveling: UBI ensures even distribution of writes across all blocks, reducing wear

 and minimizing the creation of bad blocks.

5.2

5.2.1

How UBIFS Handles Bad Blocks:

Bad Block Management by UBI:
The UBI layer is responsible for handling bad blocks on the NAND flash. When UBI detects a bad block
during erase or write operations, it remaps the data to a good block and updates the internal metadata

to reflect this.

UBIFS itself does not need to deal with bad blocks directly, as UBI hides the bad blocks from UBIFS.

The UBI marks a bad block if an error is detected during an erase or program operation. If a read error
happens, it does not mark the block immediately, instead, if starts a “torturing” process, that erases and
programs some data to the block to verify if the operations are successful. It is important to ensure the
ECC mechanism used by the UBI is the same as what the NAND devices require. Otherwise, unnecessary
“torturing” process may occur.

5.2.2 Automatic Remapping:
 When a block is found to be bad during runtime, UBI automatically remaps it to a new block, making sure
 no data is written to bad blocks.

 UBI also keeps track of how many bad blocks have been encountered and ensures that they are not used
 in future operations.

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 4 of 6

NAND BBM in Linux File System

5.2.3 Wear-Leveling:
 UBI handles both dynamic and static wear leveling. Dynamic wear leveling ensures that write operations
 are spread evenly across all blocks, while static wear leveling ensures that even blocks that store static
 data are occasionally moved to avoid uneven wear.

5.2.4 UBIFS Consistency:
 UBIFS maintains consistency with the help of UBI. In case of power failure or unclean shutdowns, UBIFS
 can recover data and maintain file system integrity by referencing UBI's metadata, ensuring no data is
 lost even if bad blocks appear during runtime.

5.2.5 Best Practices for UBIFS:
• ECC correction threshold: Because different NAND devices may require different level of ECC correction

capabilities, it is important to set up UBI low level driver to be consistent with the device requirement.
This istypically done by changing the “bitflip_threshold” value in the MTD. This variable is

defined in mth.h starting with Linux version 3.8. It is highly recommended to update to Linux version
3.8 or later when using UBIFS withNAND devices.

• Monitor UBI Health: Regularly check the UBI health reports to monitor the number of bad blocks and
 the wear level of the NAND device.

• Minimize Erase Operations: Avoid frequent data deletion and rewriting, as these operations can
 accelerate block wear and lead to the development of more bad blocks.

6 Conclusion

 Handling bad blocks in NAND flash is critical for ensuring the reliability and longevity of embedded
 systems. JFFS2 and UBIFS, the two most common Linux file systems for NAND, both have robust bad block
 management mechanisms. JFFS2handles bad blocks directly, while UBIFS relies on the UBI layer for
 managing bad blocks and wear leveling.Understanding the nuances of each file system and following best
 practices can help prevent data loss and maximize the lifespan of NAND devices.

 By implementing careful wear leveling, monitoring for bad blocks, and using appropriate error correction,
 embedded systems developers can ensure that their systems continue to function even in the face of
 inevitable NAND blockfailures.

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 5 of 6

NAND BBM in Linux File System

 NAND BBM in Linux File System

www.skyhighmemory.com Document Number: 002-23240 Rev. **

Page 6 of 6

7 Document History

Document Title: AN223240 - NAND BBM in Linux File System

Document Number: 002-23240

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** ZFENG 10/02/2024 New Application Note

